首页> 外文OA文献 >The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles
【2h】

The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles

机译:元件性能对小型低温有机朗肯循环整体循环性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low temperature organic Rankine cycles offer a promising technology for the generation of power from low temperature heat sources. Small-scale systems (~10kW) are of significant interest, however there is a current lack of commercially viable expanders. For a potential expander to be economically viable for small-scale applications it is reasonable to assume that the same expander must have the ability to be implemented within a number of different ORC applications. It is therefore important to design and optimise the cycle considering the component performance, most notably the expander, both at different thermodynamic conditions, and using alternative organic fluids. This paper demonstrates a novel modelling methodology that combines a previously generated turbine performance map with cycle analysis to establish at what heat source conditions optimal system performance can be achieved using an existing turbine design. The results obtained show that the same turbine can be effectively utilised within a number of different ORC applications by changing the working fluid. By selecting suitable working fluids, this turbine can be used to convert pressurised hot water at temperatures between 360K and 400K, and mass flow rates between 0.45kg/s and 2.7kg/s, into useful power with outputs between 1.5kW and 27kW. This is a significant result since it allows the same turbine to be implemented into a variety of applications, improving the economy of scale. This work has also confirmed the suitability of the candidate turbine for a range of low temperature ORC applications.
机译:低温有机朗肯循环为利用低温热源发电提供了有希望的技术。小型系统(〜10kW)引起了人们的极大兴趣,但是目前缺乏商业上可行的扩展器。为了使潜在的扩展器在小规模应用中在经济上可行,可以合理地假设同一扩展器必须具有在许多不同的ORC应用程序中实现的能力。因此,重要的是在不同的热力学条件下以及使用替代有机流体时,在考虑部件性能(最显着的是膨胀器)的情况下设计和优化循环。本文演示了一种新颖的建模方法,该方法将先前生成的涡轮机性能图与循环分析相结合,以确定使用现有涡轮机设计可以在何种热源条件下实现最佳系统性能。获得的结果表明,通过更改工作流体,可以在许多不同的ORC应用程序中有效利用同一涡轮机。通过选择合适的工作流体,该涡轮机可用于将温度在360K至400K之间,质量流量在0.45kg / s至2.7kg / s之间的加压热水转换成输出功率在1.5kW至27kW之间的有用功率。这是一个重要的结果,因为它允许将同一涡轮机应用到各种应用中,从而提高了规模经济性。这项工作还证实了候选涡轮机在一系列低温ORC应用中的适用性。

著录项

  • 作者

    White, M.; Sayma, A. I.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号